1 Fig. 3.1 shows a thermistor and fixed resistor of **Q00**connected through a switc to a 24V d.c. supply of negligible internal resistance. The voltmeter across the fixed resistor has a very high resistance.

Fig. 3.1

(a)	When the switch ${\bf S}$ is closed the voltmeter initially measures 8.0 V.
	Calculate

(i) the current I in the circuit

(ii) the potential difference V_T across the thermistor

$$V_{T} = V [1]$$

(iii) the resistance R_T of the thermistor

$$R_{\mathsf{T}}$$
 = Ω [2]

(iv) the power $P_{\rm T}$ dissipated in the thermistor.

$$P_{T} = \dots W [2]$$

(b) A few minutes after closing the switch **S** the voltmeter reading has risen to a steady value of 12V. The value of the fixed resistor remains at $200\,\Omega$.

Explain why

(i) the potential difference across the fixed resistor has increased

.....[3]

(ii) the resistance of the thermistor must now be $200\,\Omega$.

.....[1]

- **(c)** Sketch, on the labelled axes of Fig. 3.2 below, a possible *I-V* characteristic for:
 - (i) the fixed resistor. Label it R. [2]
 - (ii) the thermistor. Label it T. [2]

Fig. 3.2

[Total: 15]

2 Fig. 3.1 shows a circuit consisting of a battery of electromotive force 16.0V and negligible internal resistance, two resistors and a thermistor.

Fig. 3.1

(a)	(i)	Define the term <i>electromotive force</i> (<i>e.m.f.</i>).
		[2]
	(ii)	Explain the meaning of the term internal resistance.
		[1]
(b)	The	thermistor has a resistance of 360 Ω at 20 °C. Calculate
	(i)	the total resistance R of the thermistor and the resistor of resistance 120 Ω at 20 $^{\circ}$ C
		D 0 M
	<i>(</i>)	$R = \dots \Omega$ [2]
	(ii)	the potential difference <i>V</i> across the thermistor.

(i	ii)	It is suggested that the thermistor in the circuit of Fig. 3.1 is used to monitor temperatures between 20 °C and 200 °C. Describe how the potential difference across the thermistor and the current in it will vary as the temperature increases above 20 °C.
	₽	In your answer you should explain why the potential difference and current vary as the temperature increases.
		[4]
(c) ⁻	The	battery in Fig. 3.1 is rechargeable.
((i)	Calculate the charge stored in the battery when it is charged for 8.0 hours at a constant current of 1.2 A.
		charge = unit [3]
(ii)	After charging, the battery loses energy at a constant rate of 1.4 J s ⁻¹ . The e.m.f. of the battery remains constant at 16.0 V. Calculate how many hours it takes for the battery to discharge.
		districtings.
		discharge time =h [3]

PhysicsAndMathsTutor.com

3 (a) Fig. 2.1 shows combinations of resistors connected to a power supply of e.m.f. E.

Fig. 2.1a

Fig. 2.1b

- (i) For the circuit of Fig. 2.1a
 - 1 calculate the total resistance $R_{\rm s}$

1 calculate the total resistance $R_{\rm p}$

(b) Fig. 2.2 shows the I-V characteristics of two electrical components, a resistor, line **R** and a thermistor, line **T**.

Fig. 2.2

(i)	State Ohm's law. Use Fig. 2.2 to explain why component R obeys Ohm's law.
	ra

(ii) The resistor and the thermistor can be connected to a variable voltage supply of negligible internal resistance in two ways as shown in Fig. 2.3a and Fig. 2.3b.

Fig. 2.3a

Fig. 2.3b

1	9.0V in Fig. 2.3a
2	3.0V in Fig. 2.3b.
4.5	e thermistor is now connected on its own across the terminals of the supply $5V$. Fig. 2.4 shows the variation of current I with time t from the moment the thermoonnected to the supply.
	0.8
	I/A 0.6
	0.4
	0.2
	0 1.0 2.0 3.0 4.0 t/s
	Fig. 2.4
Ex	plain the shape of the graph in Fig. 2.4.
•••	

[Total: 15]

PhysicsAndMathsTutor.com